

Nuclear Power: A Government View

Society of Environmental Journalists Annual Conference

Nuclear Energy Panel

William D. Magwood, IV, Director
Office of Nuclear Energy, Science and Technology
U.S. Department of Energy

October 10, 2002

The U.S. National Energy Policy and Nuclear Power

"The NEPD Group recommends that the President support the expansion of nuclear energy in the United States as a major component of our national energy policy."

Report of the National Energy Policy Development Group, May 2001

Calvert Cliffs Nuclear Power Plant

Recommendations:

- Support expansion of nuclear energy in the United States
- Develop advanced nuclear fuel cycles and next generation technologies
- Develop advanced reprocessing and fuel treatment technologies

Energy security it is more important than ever

- All major economic downturns were preceded by energy supply disruptions and resultant price shocks
- Energy shortages
 have a significant
 impact on economic
 stability and growth

Why Nuclear Energy? we depend on it today

(Number of operating units per site shown in parenthesis)

Energy Production

Electricity Production

Why Nuclear Energy? ... it is an energy option we cannot ignore

• Oil:

- U.S. imports 51% of its oil supply
- Vulnerable to supply disruptions and price fluctuations

• Natural Gas:

- Today's fuel of choice
- Future price stability?

Coal:

Plentiful but polluting

Renewables:

- Capacity to meet demand?
- Still expensive

• Nuclear:

- Proven technology
- Issues remain

Energy Source	% of U.S. Electricity Supply	% of U.S. Energy Supply	% Imported
Oil	3	39	51
Natural Gas	15	23	16
Coal	51	22	0
Nuclear	20	8	0
Hydroelectric	8	4	0
Biomass	1	3	0
Other Renewables	1	1	0

Source: Energy Information Administration

Why Nuclear Energy? ... nuclear energy is affordable

- U.S. nuclear power plants have achieved low operating costs
- Currently operating -and perhaps
 unfinished -- nuclear
 plants are attractive in
 today's market

Source: Utility Data Institute

Why Nuclear Energy? ... plant safety and performance have steadily improved over the past 20 years

- Excellent plant management and operational experience
- Well-developed safety culture and effective regulation

Nuclear Power Is Helping Today

Cleaner Air

- Emission-free generating sources supply almost 30 percent of America's electricity
- Nuclear energy provides the greatest share of clean energy -- almost three quarters
- In the U.S., nuclear power avoids about 175 MMTC each year

And Nuclear Power Can Help Tomorrow

- Reliable, domestic base-load energy
- No carbon emissions
- Sustainable, long-term energy supply
- Supports use of advanced energy infrastructures to
 - Increase the efficient use of energy
 - Reduce overall environmental impacts
 - Deal with transportation fuel needs through production of hydrogen

Can We Build New U.S. Reactors By 2010? Yes!

Can Be Deployed by 2010

ABWR (General Electric)

Probably Can Be Deployed by 2010

- AP600 (Westinghouse)
- AP1000 (Westinghouse)
- PBMR (Eskom)

Conclusions of the Expert

Study: A Roadmap to Deploy New Nuclear Power

Plants in the United States by 2010

Possibly Can Be Deployed by 2010

- SWR-1000 (Framatone)
- ESBWR (General Electric)
- GT-MHR (General Atomics)

Cannot Be Deployed by 2010

IRIS (Westinghouse)

2010

But More Work Must Be Done

Early Site Permit Application

- Complete DOE/Industry Scoping Studies
- Launch Cooperative Demonstration of ESP process

Research and Development and Design Certification

- R&D on First-of-a-Kind Engineering
- Material, Component, and Fuel Testing

Combined Construction and Operating License Application

Conduct DOE/Industry cost-shared licensing demonstration

Advanced Nuclear Power Systems Online by 2010

- ALWRs
- Gas-cooled reactors

For new U.S. Nuclear Power Plants to be a reality by 2010, DOE must support key R&D and cooperate with industry to demonstrate untested NRC processes

The Longer-Term Future: Generation IV

DOE is leading the Generation IV International Forum

- Formal, chartered organization of Governments
- Developing GEN IV Technology Roadmap
- Conduct collaborative nuclear R&D to pool resources

The Generation IV Technology Roadmap will:

- Identify 6 to 8 most promising technologies
- Establish clear R&D plans
- Enable deployment of GEN IV systems after 2010 but before 2030

United Kingdom

Switzerland

South Korea

South Africa

Japan

France

Argentina

Also Long-Term: Hydrogen From Nuclear Power

DOE is Revitalizing its **Exploration of Nuclear Power**

FY 2002 DOE Energy R&D Funding (\$ in millions)

- DOE nearly eliminated its nuclear energy R&D funding in 1998
- Today, we are rebuilding our nuclear R&D effort - with significant industrial and international partnerships
- However, nuclear remains only one of the energy R&D areas we are exploring

www.nuclear.gov